Inversion and uncertainty of highly parameterized models in a Bayesian framework by sampling the maximal conditional posterior distribution of parameters
نویسندگان
چکیده
We introduce the concept of Maximal Conditional Posterior Distribution (MCPD) to assess the uncertainty of model parameters in a Bayesian framework. Although, Markov Chains Monte Carlo (MCMC) methods are particularly suited for this task, they become challenging with highly parameterized nonlinear models. The MCPD represents the conditional probability distribution function of a given parameter knowing that the other parameters maximize the conditional posterior density function. Unlike MCMC which accepts or rejects solutions sampled in the parameter space, MCPD is calculated through several optimization processes. Model inversion using MCPD algorithm is particularly useful for highly parameterized problems because calculations are independent. Consequently, they can be evaluated simultaneously with a multi-core computer. In the present work, the MCPD approach is applied to invert a 2D stochastic groundwater flow problem where ∗Corresponding author: [email protected] ∗Published in Advances in Water Resources, Vol. 76, pp. 1-10, 2014, doi:10.1016/j.advwatres.2014.11.013
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملCapability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields
The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کامل